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tion with polarization at 0.01 MHz. The five-layer model predicts
about a 5:1 difference.

In conclusion, it is predicted theoretically that marked differences
in tissue-absorbed power density can occur due to tissue anisotropy
at frequencies below 10 MHz. Further research efforts on aniso-
tropic effects must include more appropriate models. Whereas the
model assumes infinitely long one-directional muscle fibers, actual
skeletal muscle tissue contains finite fiber lengths. This is of little
consequence in the model. In the legs and arms, muscle-fiber orien-
tation is reasonably uniform and the one-directional model is useful.
However, in other portions of the body skeletal muscle fibers are
layered and run in several different directions. The model must be
refined in these areas of the body. A finite-layered model such as an
anisotropic sphere or spheroid is needed to extend the infinite-layered
model results. The finite-model analysis is required before useful
predictive quantitative data can be obtained. It has been previ-
ously demonstrated in this frequency range that body orientation
with respect to the RF field vectors is an important factor in tissue-
absorbed power density [4]. It is expected that body orientation
combinied with anisotropic effects will play a major role in effecting
absorbed RF power density.
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Fiber and Diffused Waveguide Structures for
Distributed-Feedback Lasers

C. ELACHI, MEMBER, IEEE,
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C. YEH, MEMBER, IEEE

Abstract—Optimum threshold conditions for oscillations of trans-
versely bounded distributed-feedback (DFB) lasers dre derived and
discussed for the case of a fiber guide and diffused guide.

The recent development of integrated-optics thin~film distributed-
feedback (DFB) lasers [11-[9] has generated much interest in the
application of the DFB concept to other types of lasers. Basically,
the DFB approach consists of replacing the two end mirrors by a
volume or surface Bragg grating, throughout the active medium,
which would provide enough feedback for self-sustained oscillation.
Kogelnik and Shank [4] have dnalyzed in detail the properties of
transversely unbounded DFB lasers. Elachi and Yeh [10] and Elachi
et al. [117, have studied the case of a thin-film DFB laser and have
shown that the presence of the transverse boundary has drastic
effects on the feedback coupling and threshold gain. In this short
paper, we derive the threshold conditions for fiber and diffuse DFB
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lasers, and we show that these structures are feasible with available
active materials. A fiber DFB laser [Fig. 1(a)] can be used as a
source of an optical-fiber communication channel and thus eliminate
the input-coupling problem. A diffused-guide DFB laser [Fig. 1(d)]
is attractive because it is easy to implement [12]. A gas-capillary
laser with diffused cladding [Fig. 1(c)] has the advantage that it
can support guided waves [13]. A diffuse guide has recently been
developed [12] and analyzed [14]. Homogeneous-capillary DFB
lasers were proposed by Marcuse [7].

If the boundary of an active waveguide is corrugated with a per-
turbation  cos (2mz/A), two contradirectional modes (p and ¢) are
strongly coupled if they satisfy the Bragg condition

By + Be = 27 /A (1)

where 8, are the longitudinal wave vectors.

The coupling coefficient «,, [1], [157], [16], can be derived, in
the case of small surface perturbation, by replacing the surface cor-
rugation with a periodic surface current [11], [15], or by solving
the exact boundary condition [107]. We found the coupling coefficient
to be equal to

€ -

2

2 12 (Q,Q,) 2 2)

Kpg = 1

where k = w/c and Q, are given in Table I for the fiber and diffuse
guide case, and 7 is the amplitude of the periodic surface perturba-
tion.

If one of the regions (inside or outside the guide) is an active
medium with gain coefficient @, the effective gain coefficient would
then be CG. This is due to the fact that the optical energy is never
totally confined to the active region. The value of C was determined
by taking the dielectric constant to be complex in the gain region and
then solving for the (complex) longitudinal wave vector g;. For small
gain, a Taylor expansion series gives

k) F;
‘" Reif:l 1 +F,

(3)

for the case where the guiding region is active (inside the-fiber or in
the inhomogeneous half-space), and
k(e)2 1
C; = (52) ( 4)
Re{s:} 1 +F,
for the case where the outside region is active (cladding or homo-
geneous half-space). The expression F is given in Table I. Independ-

ently, it can be shown that in the case of an active fiber the coefficient
C;is equal to

o k@ P
* Re{f}P + P

(3)

where P and P’ are the powers inside and outside the fiber. The first
term in (5) expresses the fact that the optical ray follows a zigzag
line.

The threshold gain can now be determined by using a modified
form [11] of the Kogelnik and Shank approach [4] to take into ac-
count the fact that the forward and backward waves could be dif-
ferent modes, and therefore might have different effective gains
and group velocities.

The required threshold gain for laser oscillation is given by

2
= —————— Re{Y
Colh) + oty 01T ®
and the corresponding phase mismatch by
k 2 T (¥ 5o} )
== TIm
(o (k) + o (k) *

where Y, is a solution of
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DFB waveguide laser structures studied. (a) A DFB fiber laser.

The corrugation can be geperated by ion-beam machining. (b) An
ideal DFB fiber laser which can be analyzed analytically. The relation
between n and D can be derived using Fourier series expansion:

n

(D/m)(D/2w)}2, (¢) Difftuse DFB capillary laser. The inhomo-

geneity in the substrate allows waveguiding. (d) Diffuse DFB laser.
The exponential change in the dielectric constant can be achieved
with good approximation by diffusing foreign material in the lower

half-space.
TABLE I
Configuration Q F
g J K Jbos% 4 82 § JI A, + sw (J /0.0
Fiber# [15] I DO R S I - ._O.M_
84, K 5 58 s | KKy + Sw (Ko/k])'
8d v N .. /v 2/a kd 6d 9 |Jd _, - J ]
Diffuse[14] 2 — (1 + -—-) (1 + 28d —“L - 2kdva \"”'/ — ol v
v 268d 9 9 v v J\)

* The prime corresponds to the derivative relative to the argument. The argument of the Bessel functions J and
K are sw and dw, respectively. s and 6 are the transverse wave vectors, and 8 are the longitudinal wave vectors of the
unperturbed (smooth-boundary no-gain) waveguide. » is the order of the Bessel function, d is the diffusion depth, and
« is the change in the relative permittivity at the diffusion surface.

Yoo = (ko (k) + Ypo? (k))V? coth (xpe® (k) + Yo (k)) V2L
(8)

where L is the length of the laser, ¢ is the speed of light in vacuum,
and ¥; is the group velocity of the ¢th mode.

In Figs. 2 and 3, we plotted the coupling coefficient x,,L, the co-
efficient C, and the threshold gain GL as a function of the operating
wavelength A for a number of cases.

Near cutoff, the coupling coefficient is small because the optical

energy is spread thinly over a large region. At high frequency, the
coupling in the fiber case is again very weak because the energy is
confined inside the core, and the field at the boundary is weak, thus
explaining the increase—decrease behavior of «,,L. However, for the
diffused guide, the energy tends to concentrate progressively more in
the high-index region next to the corrugated boundary, thus giving
a continuously increasing coupling coefficient. It should be mentioned
that for very high frequency, when N tends to become equal to g
or smaller, our theory is not valid (Rayleigh limit).
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Fig. 2. Coupling coefficient, gain efficiency, and threshold gain coeffi-
cient for a DFB fiber laser. ¢ = (1.5)% e = (1.4)2. (a) 0~0 mode

coupling with an active fiber. (b) 0-0 mode coupling with an active
cladding. (c) 0—1 mode coupling with an active fiber. nL/w? = 4.

An interesting result of our calculations is that a fiber laser has
an optimum operating region which requires the least gain for self-
sustained oscillation. To illustrate, let us consider the case where:
D/2w = 0.01, n/w=~6 X 107, L/a = 6600, and M/w = 1.2. For
A =1 pm, this corresponds to w = 0.83 um, d = 0.016 um, and
L = 5.5 mm. The corresponding threshold gain coefficients for the
0-0 coupling is GL ~ 3 for an active fiber, and GL == 4.2 for an active

cladding. These gains could be achieved with some active materials
(for instance, dye). A larger value of D/2a would lead to even lower
threshold gain.

In the case of a diffused waveguide, optimum operation occurs at
the highest frequency possible. To illustrate, let us consider A =
0.63 um, d = 1 um, 3 = 0.015 pm, and L = 0.5 cm. The threshold
gain coefficient for an active diffused region is GL = 0.4 for the 0~0
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Fig. 3. Coupling coefficient, gain efficiency, and threshold gain coeffi-

cient for a DFB diffuse laser: ¢ =

(1.5)%, e = 1.0, @ = 0.1. (a) 0-0

mode coupling. (b) 0—1 mode coupling with active homogeneous half-
space. (¢) 0—0 and 0—1 mode coupling with active inhomogeneous half-

space. nL/d* = 75.

coupling, and GL = 1.5 for the 0-1 coupling. These gains are well
below the limits of many active materials (dye, semiconductors).
In the case of a capillary guide [Fig. 1 (¢) ], the threhsold gain for
the case of an active channel is very close to the gain curve in Fig.
3(a).
Thus we conclude that fiber and diffuse waveguides can be effec-
tively used to develop transversely bounded DFB lasers.
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Comments on “Error in Impedance Measurement When
the Signal is Introduced Across the Slotted-Line Probe”

ROBERT V. GARVER

In the above short paper,! an attempt was made to calculate the
errors in VSWR and phase caused by detector mismatch in a back-
wards-connected (power into the probe) slotted line. The short
paper is wrong. There will be no first-order errors as predicted theo-~
retically in the referenced short paper. The errors encountered in
measuring nonlinear devices (diodes) are more complex than those
encountered in measuring linear devices. It is very important that
the harmonics generated by the diode being measured be absorbed
in a matched load and kept out of the detector (especially for high-
VSWR diodes). A low-pass filter is commonly used in front of the
detector, but (unless it is padded) this filter reflects the harmonic
power back into the diode. When the diode being measured does
not see a match at the harmonic frequencies, then the harmonic
mismatch will interact with the diode to make more efficient or less
efficient the conversion to harmonies, depending on the phase

_relationship between diode and harmonic mismatch. The variable
conversion to harmonics will change the impedance of the diode
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being measured (at the fundamental frequency) as the phase be-
tween diode and harmonic mismatch (unpadded low-pass filter) is
varied. Therefore, when using a backwards-connected slotted line,
it is important to have in front of the detector a low-pass filter that
is padded or otherwise matched at the harmonic frequencies as seen
from the diode. It is not important for the detector to be matched
at the fundamental frequency in a backwards-connected slotted
line, as proven in the following discussion.

Generator mismatch causes no first-order errors when the gen-
erator is connected to a slotted line in the normal manner. Given a
generator and detector with identical output (input) impedances,
one can interchange them and there will be no change in energy
transfer through the slotted-line network for a linear passive net-
work. Therefore, detector mismatch causes no first-order errors in
measurements using a backwards-connected slotted line when linear
passive impedances are being measured.

The error made in the subject short paper is that the maximum
and minimum of the standing wave between detector and unknown
are calculated instead of the maximum and minimum voltage trans-
fer from the generator to the real part of the detector impedance.

A simple experiment with a backwards-connected slotted line
will prove the point. With the probe decoupled 30 dB and a good
impedance match for an unknown, connect a detector with a 2:1 .
VSWR to the slotted-line input with a phase shifter between it and
the slotted line. The VSWR of the good match will be measured for
all settings of the phase shifter and not the VSWR of the detector.

As a mental experiment, take the case of a perfectly matched
load for an unknown. In this case, the distance between detector
and unknown will give no change in error. According to the subject



